Overview of Diesel Emissions Control Technologies Available to Underground Mining Industry

Aleksandar Bugarski NIOSH Pittsburgh Research Laboratory

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

1

Diesel Emissions and Occupational Health Standards

- Gaseous emissions
 - Carbon Dioxide (CO₂), ACGIH TLV-TWA is 5000 ppm
 - Carbon Monoxide (CO), ACGIH TLV-TWA is 50 ppm
 - Nitric Oxide (NO), ACGIH TLV-TWA is 25 ppm
 - Nitrogen dioxide (NO₂), ACGIH TLV-TWA is 3 ppm,
 ACGIH TLV-STEL is 5 ppm
 - NOTE: MSHA adopted 1973 ACGIH standards
- Particulate emissions
 - Total Carbon (TC) = Elemental Carbon (EC) + Organic Carbon (OC), MSHA 160 μg/m³ (interim standard is 400 μg/m³)
 - Current levels up to 1500 µg/m³

Controlling Emissions at the Source

- Low emitting engines
- Alternative fuel formulations and fuel additives
- Aftertreatment technologies
 - Curtailment of gaseous emissions
 - Curtailment of particulate emissions
 - Combination of technologies

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

3

Engines

- All diesel engines introduced in U.S. metal and nonmetal mines must be approved by MSHA or EPA [30 CFR Part 57, 2001]
 - List of MSHA approved engines -(www.msha.gov/TECHSUPP/ACC/lists/07npdeng.pdf)
 - Suppliers should be able to provide you with emissions data for certified models.
- Replace old technology with new technology

Engine

- Engine-out emissions control strategies
 - Charge air cooling
 - Fuel injection pressure, patterns and multiple injection
 - Injection timing
 - Exhaust gas recirculation
 - Control of air-to-fuel ratio

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

5

Engine Deration

- High altitude
- Ventilation requirements
- Example
 - engine rated at 325 hp
 - engine rated at 285 hp

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

Engines

- System approach
 - Engine is integral part of the system:
 - vehicle/engine/aftertreatment
 - ventilation
 - duty cycle
 - economics...

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

7

Fuel

- Fuel effects on DPM emissions
 - sulfur content:
 - Sulfates, SO₂ to SO₃ + H₂O to H₂SO₄ ,
 - < 500 ppm (avg. 350 ppm) sulfur,</p>
 - < 15 ppm by 2007 (EPA),</p>
 - affects performance of catalyst based technologies,
 - competing with NO for the O₂;
 - cetane number;
 - aromatic content.

Alternative Fuels

- Biodiesel
 - oxygenated fuel
 - virtually no sulfur
 - NO₂ issue
 - DEEP study (www.deep.org)
 - Blend with 58% of biodiesel, diesel oxidation catalyst
 - 43% increase in N0₂
 - 29% reduction in elemental carbon emissions
 - relatively expensive
 - used primarily blended with regular diesel (B20, B50,...)

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

g

Alternative Fuels

- Synthetic diesel
 - virtually no sulfur
 - low on aromatics
 - significant reductions in regulated emissions
 - Schaberg et al. [1997]
 - HC (49%), CO (33%), NOx (27%), PM (21%)
 - expensive and not readily available

Fuel Additives

- Fuel additives
 - Combustion enhancers
 - DPF regeneration aid
- Fuel additives used in U.S. underground mines should be approved by EPA.
- Secondary emissions
 - Fuel with additives for stimulating filter regeneration should not be used in the engines that are not equipped with DPFs

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

11

Aftertreatment Technologies

- Gaseous Emissions
 - Diesel Oxidation Catalytic Converters (DOC)
 - Control of Nitric Oxide (NOx) Emissions
- Particulate Emissions
 - Diesel Particulate Filter (DPF) Systems;
 - Disposable Diesel Particulate Filter Systems.

Diesel Oxidation Catalytic Converters (DOC)

- * CO to CO₂
 - 70-90% reductions in CO
- Hydrocarbons to CO₂
 - 70% reduction in HC
- Reduce organic portion or soluble organic fraction (SOF) of DPM
 - 20-30 % reductions in total DPM

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

Control of Nitric Oxide (NO_x) Emissions

- Selective catalyst reduction (SCR)
 - Up to 80% reduction
 - Relatively complex system
 - Urea injection
 - Commercially available for stationary systems
- Lean NO_x traps (LNT)
 - 30-50 % reduction
 - Relatively complex system
 - Fuel injection
 - Not commercially available

13

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

Diesel Particulate Filters Systems (DPFs)

 Disposable Diesel Particulate Filter Systems

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

1

15

Diesel Particulate Filters (DPFs) Media

- wall flow monoliths
- deep bed filters

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

Diesel Particulate Filters (DPFs) Catalyst

- Non-Catalyzed DPF
 - no regeneration aid;
- Catalyzed DPF
 - wash coat catalyst:
 - platinum, palladium, rhodium, vanadium, magnesium, strontium
 - fuel borne catalyst:
 - platinum, cerium, iron, strontium, ...

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

17

Efficiency of DPF Systems

- DPM = Elemental Carbon + Organic Carbon+
 Sulfates + Water + Ash
 - Composition is function of engine design, engine operating conditions, aftertreatment...
- DPFs are primarily designed for curtailment of DPM emissions. The effects on gaseous emissions depend on a catalyst formulation.

Efficiency of DPF Systems

Mass

- Cordierite 85% (www.msha.gov)
- Silicon carbide 87% (www.msha.gov)
- VERT 90% (new), 85% (after 2000 hours)

Carbon

- Occupational standards based on total (U.S.) or elemental carbon (Germany, U.S. in future)
- Over 95% on EC.

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

Efficiency of DPF Systems

* Number

- Potential for forming a large number of ultrafine and nanosize particles from semi-volatile hydrocarbons, sulfates, and ash
- Potential for forming large number of transition metals particles when fuel additive are used
- VERT 95% (new), 90% (after 2000 hours)

Surface area

- Ultrafine particles (<100 nm) have a very larger surface area per unit mass, bioavailability
- Currently there is no standards

Chemical composition

- Transition metals
- PAH

Secondary Emissions

- Filter effects on NO₂ emissions:
 - The filters washcoated with platinum based catalysts have tendency to increase NO₂ emissions. Function of:
 - catalyst formulation
 - exhaust temperatures
 - NO, to PM ratio
 - fuel sulfur content...
 - Wascoated base metal catalysts do not have tendency to increase NO₂ emissions.
 - The systems using fuel borne catalysts, even those that are based on platinum, were not found to increase NO₂ emissions.

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

23

Secondary Emissions

- nanoparticles:
 - Evident when fuels with higher sulfur content are used in the catalyzed systems,
 - when fuel borne catalysts are used to stimulate DPF regeneration...
- sulfates:
 - Remedy is ultra low sulfur fuel
- transitional metals:
 - The major source are fuel borne catalysts, engine wear, and lubricating oil. Avoid using fuel borne catalyst with engines that are not equipped with DPF system.
- dioxins, nitro-PAHs...

DPF SystemsRegeneration

DPF Regeneration – burning off carbon collected in a filter media

- Approximate minimum exhaust temperatures required to initiate regeneration process:
 - Non-catalyzed DPF over 550 °C
 - Base metal catalyst over 390 °C
 - Nobel metal catalyst over 325 °C
- 25-30% or more of a duty cycle an vehicle/engine should be operated at loads generating exhaust temperatures exceeding aforementioned regeneration temperatures.

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

25

DPF Systems Regeneration

- Regeneration temperatures are function of:
 - Catalyst loading
 - Contact between catalyst and carbon
 - NO,/PM ratio in the exhaust...
- Regarding the regeneration concept DPF systems can classified as
- Passive
- Active

DPF Systems - Passive Regeneration

- The exhaust gas temperatures are favorable and a DPF is regenerated during a duty cycle.
- The regeneration is enhanced by catalyzing filter media.
- Establishing exhaust temperature profile crucial for success of selection process.
- Engine idling should be minimized.

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

27

DPF Systems Active Regeneration

- Accumulated DPM is removed using external source of energy (electrical heaters)
- ON-BOARD: A heating element is on-board of a vehicle and regenerations station with power and compressed air supply is off-board of a vehicle:
 - no need to remove filter
 - suitable for most engines and applicationsdowntime associated with regeneration
 - regeneration station requirements
 - · space, power, compressed air
 - higher maintenance requirements mostly associated with electrical heaters
 - regeneration intervals can be extended with use of catalyst in the system...

DPF Systems Active Regeneration

- OFF-BOARD: heating element is integral part of off-board regenerations station.
 - require removal of the filter from the system
 - suitable for smaller units
 - risk associated with handling the units
 - costs associated with replacement of the gaskets
 - downtime for swapping filter elements
 - problem of maintaining integrity of the system
 - regeneration station requirements

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

20

DPF Systems Active Regeneration

- Filter should be sized to accumulate DPM between two active regenerations.
 - Engine PM emissions over selected test cycles are available from engine certification process!!!
- Media has to be compatible with selected regeneration scheme
 - Silicon carbide for express regeneration
 - Cordierite for slow regeneration

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

DPF Systems Passive vs. Active Regeneration

- Passive DPFs
 - low operational requirements
 - low maintenance requirements
 - relatively inexpensive, depending on catalyst formulation
 - regeneration depend on exhaust heat!!!
 - potential for increase in NO₂, sulfates emissions

DPF Systems Passive vs. Active Regeneration

- regeneration does not depend on exhaust heat
- no effects on secondary emissions
- require changes in way vehicles are operated
- higher maintenance requirements
- require change in operator's attitude
- relatively expensive

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

DPF Systems Operational Issues Ash Accumulation

- Ash originates from fuel, lubricating oil, engine wear or fuel additives.
 - up to 1% of DPM
- Ash can not be regenerated as carbon. Accumulation of the ash in the filter results in continuous increase in base backpressure.
- Periodic cleaning of the filter is required, usually every 1000-2000 hours.

DPF Systems Backpressure Monitoring

- Sizing of the system is critical
 - Engine backpressure engine limitations
 - Caterpillar 3306 PCNA 34 in H₂0
 - DDEC Series 60 42 in H₂0
- Reliable backpressure monitoring and logging capabilities are essential for performance of the filtration system.
- Pressure gage and alarm should be included in the filtration system.

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

35

Selection of DPF Strategy

- Ultimate goal is to reduce exposure of the miners to harmful gases and particulate matter
 - Production vehicles (heavy-duty)
 - Support vehicles (light-duty)
- DPF is integral part of the vehicle/engine/filter system
 - Right size of the engine for the application
 - Exhaust temperature
 - DPF concept
 - Maintenance
 - Significant lube oil consumption jeopardizes filter performance and life. Filter can not substitute maintenance.

Selection of DPF Strategy

- Underground mining applications require additional considerations:
 - confined space;
 - no sunlight;
 - occupational exposure limits;
 - application specific duty cycles;
 - different set of the mind.
- Uniqueness vs. "one size fits all"

NIOSH Diesel Emissions Workshops Cincinnati, OH (2/27/2003) and Salt Lake City, UT (3/4/2003)

37

DPF systems Considerations

- Integrity of a filtration system from an engine to the end of a tailpipe is crucial for reducing concentrations of DPM in mine air.
- Filter crankcase breather emissions
 - Closed crankcase filtration system
- The exhaust pipe insulation should reduce heat loss and increase possibility for passive regeneration. Insulation should to be removable so integrity of a system can be periodically inspected.

